utils.py¶
-
class
ucas_dm.utils.
Evaluator
(data_set)[source]¶ Bases:
object
This class provide some methods to evaluate the performance of a recommend algorithm. Two measures are supported for now: Recall and Precision
-
static
_log_to_file
(algo_dict, **kwargs)[source]¶ This func will save algorithm’s dict data and it’s performance data to ./performance.log in json format.
Parameters: - algo_dict – algorithm’s dict format.
- kwargs – Performance data of the algorithm.
-
evaluate
(algo=<ucas_dm.prediction_algorithms.base_algo.BaseAlgo object>, k=[], n_jobs=1, split_date='2000-1-1', debug=False, verbose=False, auto_log=False)[source]¶ Parameters: - algo – recommend algorithm
- k – list of integers represent the number of recommended items.
- n_jobs – The maximum number of evaluating in parallel. Use multi-thread to speed up the evaluating.
- split_date – on which date we split the log data into train and test.
- debug – if true, the evaluator will use 5000 instances in data set to run the test.
- verbose – whether to print the total time that evaluation cost.
- auto_log – if true, Evaluator will automatically save performance data to ‘./performance.log’
Returns: average recall and precision
-
static